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Long-range correlations in quantum systems with aperiodic Hamiltonians
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An efficient algorithm for the computation of correlation function~CF! at very long distances is presented
for quantum systems whose Hamiltonian is formed by the substitution aperiodic sequence alternating over unit
intervals in time or space. The algorithm reorganizes the expression of the CF in such a way that the evaluation
of the CF at distances equal to some special numbers is related to a family of graphs generated recursively. As
examples of applications, we evaluate the CF, over unprecedentedly long time intervals up to order of 1012, for
aperiodic two-level systems subject to kicking perturbations that are in the Thue-Morse, the period-doubling,
and the Rudin-Shapiro sequences, respectively. Our results show the presence of long-range correlations in all
these aperiodic quantum systems.@S1063-651X~97!16103-7#

PACS number~s!: 05.45.1b, 03.65.2w, 05.30.2d
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Considerable attention has been recently devoted to
long-time behavior of correlation functions~CF’s! in quasi-
periodically or, more generally, aperiodically driven qua
tum systems@1–6#. The question of particular interest
whether the quantum suppression of chaos, typical of tim
independent and time-periodic Hamiltonians, can be circu
vented, or at least strongly weakened, in Hamiltonians
are aperiodic in time. This question arises from the followi
background. In periodically driven systems, as the tim
evolution operatorU is periodic in time, according to the
Floquet theorem, wave packets evolve as superposition
periodic functions multiplied by exp(ivn t), wherevn are the
eigenvalues of the Floquet operator. In bounded systems
spectrum ofvn is discrete, therefore the correlation functio
do not decay. On the other hand, when the system is sub
to an aperiodic driving, which represents an intermedi
situation between the random and the periodic extremes
Floquet theorem is no longer applicable, so that the ti
evolution need not be periodic or deterministically aperiod
One might expect that the correlation functions decay to z
for sufficiently long time or, at least, that this happens wh
the perturbation is strong enough.

A number of papers in this aspect seemed to resul
somewhat contradictory conclusions@1#. While some authors
believed that there occurs a transition from the nondecay
correlations~nonmixing behavior! to decaying correlations
~mixing behavior! when perturbation is increased@2,3#, oth-
ers questioned the existence of such a transition@4,5#. The
basic difficulty in obtaining a clearcut answer to this quest
lies in the absence of an analytical solution, and the pract
impossibility, up to now, of evaluating the autocorrelati
functions over sufficientlylong-time intervals to establish o
exclude the sporadic revivals of the CF, the presence
which means the existence of nondecaying correlations.

In this paper, an efficient algorithm is presented to alle
ate this difficulty for some aperiodically driven system
where the aperiodicity of the perturbation is generated
some substitution rules. We consider here as examples
551063-651X/97/55~3!/2632~8!/$10.00
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two-level systems subject to three specific types of aperio
cally modulated kicking perturbation that follow, respe
tively, the Thue-Morse~TM!, period-doubling ~PD! and
Rudin-Shapiro~RS! sequences. The algorithm is, howeve
expected to be applicable to other aperiodically driven s
tems that are based on the substitution rules or possess
similarity.

The two-level system subject to a kicking perturbati
that is aperiodic over unit time intervals is described by
following Hamiltonian

H~ t !5 1
2Esz1

1
2sx(

n51

`

an~n!d~ t2n!, ~1!

wheresx andsz are Pauli matrices,n(n), being either 1 or
0, follows an aperiodic sequence that is generated by
specific substitution rule, andan(n)5a1 or a0 are two differ-
ent kickings. Considering the discrete times, one can w
the solution of the Shro¨dinger equation as follows@5,6#:

uc~n!&5Un~n!Un~n21!•••Un~2!Un~1!uc~0!&[Wnuc~0!&,
~2!

where

Un~n!5e2~ i /2!an~n!sxe2~ i /2!Esz. ~3!

In the present study, we are interested in the long-ti
behavior of the CF@6,7#,

C~r !5 lim
N→`

1

N2r (
k51

N2r

^c~k!uc~k1r !&5 lim
N→`

CN~r !, ~4!

the decaying of which, for larger , indicates mixing behavior
and ergodicity, whereas the revivals of which would sign
the presence of long-range correlations and nonmixing
havior. However, as is well known, the direct numeric
evaluation ofCN(r ) for r.105 andN.107 is not economi-
2632 © 1997 The American Physical Society
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FIG. 1. The first four members of the grap
family, G1–G4, serving to calculate the correla
tion functionsC2L11(2L) to C2L14(2L) for the
TM system at arbitrary integerL.
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cal, and in fact rather difficult due to the numerical err
accumulated. Fortunately, for aperiodic quantum syste
whose aperiodicity is constructed with the substitution ru
the self-similar nature of the Hamiltonians allows a recurs
reorganization of expression~4! with the help of a family of
tree graphs, by which it becomes possible to evalu
CN(r ) for very large r ~and even much largerN to have
convergence! equal to some special numbers. Although t
decaying ofCN(r ) at such peculiar values ofr may not
provide any useful information, the revivals of the CF
such values ofr would be a signal of nondecaying~long-
range! correlations. For the cases with the TM, PD, and
aperiodic Hamiltonians, such special numbers forr are found
to be 2L, while those forN are 2L1M, with L andM positive
integers. We shall now describe in some detail the algorit
for evaluatingCN(r ) at r52L for the TM, PD, and RS two-
level systems.

It should be emphasized that the reason for choosing
TM, PD, and RS sequences as our first working example
that these aperiodic sequences display rather different t
of aperiodic modulations, in the sense that they have
‘‘wandering exponents’’v,0, v50, and v.0, respec-
tively @8#. Here the wandering exponentv is defined by
@8–10#

D~N!5 (
n51

N

~an~n!2ā!;Nv, ~5!

whereN is the length of the time series, andā is the aver-
aged value of modulation

ā5 lim
N→`

1

N(
n51

N

an~n! , ~6!

which is set to be zero for all three cases studied here.

TM SYSTEM

The Hamiltonian describing a two-level system with kic
ing perturbation modulated in the TM sequence is given
Eq. ~1! with an(n)5a15A if n(n)51 andan(n)5a052A
for n(n)50. Here n(n) follows the binary TM sequence
deduced from the substitution rule 1→10 , 0→01, and
started with 1. Notice thata1 and a0 are so chosen as t
makeā vanish. The method of evaluatingC(r ) at r52L and
N52L1M is based on a family of graphGM , with
M51,2,3,. . . , therecursive law for which is interestingly
related to that of the TM sequence itself. Figure 1 shows
first four members of the graph family, whose growth ru
are described below. Similar growth rules serve to comp
the CF for a large class of TM-driven quantum systems.
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Each member of the graph family consists of nodes a
branches that connect nodes in a treelike way. Each nod
labeled by a finite string of distinct integers that are arrang
in decreasing order from the left to the right. In addition, t
nodes are classified into three types, distinguished by s
circles (d), empty circles, (s) and diamonds (L) @see Fig.
1#. The first memberG1, shown in Fig. 1~a!, generates the
entire family of graphsGM by the recursive laws describe
below:

~1! TheM -stage graphGM is generated from its previou
stageGM21.

~2! When generating the graphGM ~see also below! from
the graph GM21, every node, labeled, say, b
npnp21•••n1 in GM21, will survive and, in addition, grow a
node denoted byMnpnp21•••n1. For simplicity we omit the
rightmost integer 0 for all nodes except for the one labe
by a single integer 0.

~3! Each node ofGM21 grows a new node inGM of the
type based on the following rules:~a! a node of types

yields a node of typed; ~b! a node of typed produces a
node of types; and ~c! a node of typeL grows a node of
the same typeL. The only exception lies in the fact that th
node labeled by (M21) •••21 and of the typeL (s) in
GM21 will give birth to a node of the types (L) in GM
rather than of typeL (d). See, e.g., the nodes 4321 in
G4 @Fig. 1~d!# grown by the nodeL 321 inG3 @Fig. 1~c!#
for the case withM54. The graphsG2, G3, G4 in Fig. 1
and, in fact, the graphs up to any stageM are easily made
from the growth laws given above.

Now we turn to the rules relating the graphGM and the
autocorrelation functionCN(r ). Rewriting Eq.~4! as

CN~r !5^c~0!uĈN~r !uc~0!&, ~7!

with

ĈN~r !5
1

N2r (
k51

N2r

Wk
†Wk1r ~8!

for r52L andN52L1M, one has

Ĉ2L1M~2L!5
1

2L1M22L
ŜM~2L!. ~9!

HereŜM(2
L) is an operator that can be obtained by summ

up all nodes in the graphGM except the one labeled b
M (M21)•••21. The string of distinct integers labeling eac
node, together with the type of the node~denoted bys,
d, andL), determines the operator with which the no
makes contributions toŜM(2

L). In the following, we illus-
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FIG. 2. Absolute value of the autocorrelatio
functionsCN(r ), with N52L17 and r52L, as a
function of L for the TM two-level system with
E52p/3 and ~a! A50.05(p/2), ~b!
A50.5(p/2).
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trate the contribution by each node; the derivation of su
correspondence for the TM system will be presented as
example in the Appendix.

The operator contributed by a node labeled
npnp21•••n2n1 is

Wn*3 2L
† XL*W~n*11!3 2L,

where n*5 b(2np12np211•••12n212n1)/2c11, with bxc
denoting the integer part ofx, and

XL*5H 2L for a node of type L

XL for a node of type s

X̄L for a node of type d.

~10!

Here the operatorsXL andX̄L are given by the recursion law

XL115W̄2LXLW2L
†

1X̄L ,

X̄L115W2LX̄LW̄2L
†

1XL ~11!

and the initial conditions

X15W̄1W1
†11,

X̄15W1W̄1
†11, ~12!

with W̄2L given by W2L after the exchanging of eac
n(n)51 „an(n)5A… and n(n)50 „an(n)52A…. The recur-
sion relations forW2L andW̄2L themselves are governed b
the substitution rule of the TM sequence,

W2L115W̄2LW2L, W̄2L115W2LW̄2L. ~13!

As an example, we present the expression forS3(2
L),

which is obtained from the graphG3, shown in Fig. 1~c!, and
thus consists of seven terms:

S3~2
L!5~s 0!1~L 1!1~d 2!1~s 21!

1~d 3!1~L 31!1~s 32!

5W2L
† XLW232L12LW232L

† W332L1W332L
† X̄LW432L

1W432L
† XLW532L1W532L

† X̄LW632L

12LW632L
† W732L1W732L

† XLW832L. ~14!

Here the symbols~s 0!, ~L1!, ~d2!, etc. denote the contri
butions made by the corresponding nodes in the graphG3
h
n
@see Fig. 1~c!#. Similar symbols are used later in Eqs.~15!
and ~20! to denote contributions toS3(2

L) by the nodes in
the graph. Notice that the nodeL321 in graphG3 does not
contribute toS3(2

L).
We have computedC2L1M(2L) for all 2<L<40 with

M57, where the time lagr52L is less than 1% of the
sample length 2L1M, and convergence has been reached
M . The calculation is performed using graphG7, so that
S7(2

L) is a sum of 127 terms. The results are plotted in F
2 with two typical values of free parametersE andA. With
the algorithm given above, one is able to evaluateC(r ) for
very long-time delays up to order of 240'1012. The difficulty
of losing numerical accuracy when computing the CF w
increasingr is avoided, since the total lengthN of the time
series could be simultaneously increased, while alw
choosing graphG7 and keepingS7(2

L) a sum of 127 terms.
For example, whenL540, one hasr5240'1012 and
N5247'1014, an unprecedentedly long-time delay and tim
series, the direct evaluation ofCN(r ) needs to sum up 1014

terms. With the present algorithm, however,CN(r ) stays to
be a sum of 127 terms. As a consequence, the results sh
in Fig. 2, although numerical in nature, are believed to
rather accurate and reliable. The revivals of the CF o
long-time intervals is established with reasonable certain
implying the presence of the long-range correlations in
corresponding quantum system.

PD SYSTEM

The Hamiltonian of the PD two-level system is given b
Eq. ~1! with an(n)5A for n(n)51 and an(n)522A for
n(n)50, whilen(n) is the binary PD sequence composed
1 and 0. The PD sequence is made from the substitution
1→10, 0→11 and started with 1@9,10#. Notice here that
a1 anda0 are so chosen as to makeā vanish. Similar to the
TM case, the method of evaluatingCN(r ) at r52L and
N52L1M for the PD system is also based on a family
graphGM , M51,2,3, . . . . Figure 3 shows the first fou
members of the graph family, the growth rules of which a
described below.

Each member of the graph family is composed of nod
and branches that connect nodes in a treelike way. The n
are labeled by a finite string of distinct integers with t
rightmost integer being 0 orn̄0. Heren0 is also an integer
~see Fig. 3!. The first memberG1, shown in Fig. 3~a!, gen-
erates the entire family of graphsGM by the recursive laws
described below:

~1! The (M11)-stage graphGM11 is produced from its
previous stageGM .
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FIG. 3. The first four members of the grap
family, G1–G4, determining the correlation func
tionsC2L11(2L) to C2L14(2L) for the PD system
at arbitrary integerL.
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~2! When generating the graphGM11 from the graph
GM , the nodes labeled by a string of integers ended up w
0, say,npnp21•••n10 in GM , will survive and grow a node
denoted byMnpnp21•••n10, while a node associated wit
nqnq21•••n1n̄0 also survives and gives birth to a nod
Mnqnq21•••n1n̄0. The only exception is that the node ass
ciated with a single integer(M21) in the graphGM should
survive, and generate a node labeled byM̄ instead of
M (M21). The graphsG2, G3, G4 in Fig. 3 and, in fact, the
graphs up to any stageM are available from the recursiv
laws given above.

The autocorrelation functionCN(r ) is also given by Eqs.
~7!–~9!. The operatorŜM(2

L) is found by summing over al
nodes in the graphGM . The string of integers associate
with each node governs the operator as well as its prefa
with which the node contributes toŜM(2

L).
The operator contributed by a node labeled

npnp21•••n2n10 is

W†~np!W
†~np21!•••W

†~n2!W
†~n1!W~0!W~n1!

3W~n2!W~np21!W~np!,

while the contribution toŜM(2
L) of a node denoted by

nqnq21•••n2n1n̄0 is

W†~nq!W
†~nq21!•••W

†~n2!W
†~n1!A~n0!W~n1!

3W~n2!W~nq21!W~nq!,

with

A~n0!5W†~n0!W
†~n021!•••W†~1!W†~0!W~n011!.

Here

W~n!5W2L1n,

which can be easily found by using the substitution rule
the PD sequence. The prefactor carried by each node isL,
th

-

or

f

with the following two exceptions:~a! the node 0 carries a
prefactor 2L21; and ~b! in the graph GM , the node
(M21) carries a prefactor 1.

As an instance, we give the expression forS3(2
L), which

is generated by the graphG3, shown in Fig. 3~c!, and has
eight terms:

S3~2
L!5~d 0!1~d 10!1~d 20!1~d 210!1~d0̄!

1~d1̄!1~d 20̄!1~d2̄!

5~2L21!W2L12LW2L11
† W2LW2L11

12LW2L12
† W2LW2L12

12LW2L12
† W2L11

† W2LW2L11W2L1212LW2L
† W2L11

12LW2L11
† W2L

† W2L1212LW2L12
† W2L

† W2L11W2L12

1W2L12
† W2L11

† W2L
† W2L13. ~15!

As in the TM case, we have computedC2L1M(2L) for all
2<L<40 withM57 to have convergence inM . The calcu-
lation is performed using graphG7, soS7(2

L) is a sum of
128 terms, regardless of the value ofL. The results are plot-
ted in Fig. 4 with two typical values of free parametersE and
A. The nondecay behavior of the CF over long-time interv
is clearly seen.

RS SYSTEM

The Hamiltonian of the RS two-level system is once ag
given by Eq. ~1! with an(n)5A for n(n)51 and
an(n)52A for n(n)50, butn(n) is the binary RS sequenc
composed of 1 and 0. The RS sequence is made from a m
complicated substitution rule 00→0001, 01→0010,
10→1101, 11→1110, and started with 00@9,10#. Similar to
the former cases, the method of evaluatingCN(r ) at r52L

and N52L1M for the RS system can also be based on
family of graphGM , with M51,2,3, . . . . Figure 5 shows
the first three members~denoted byG2, G3, andG4) of the
n
FIG. 4. Absolute value of the autocorrelatio
functionsCN(r ), with N52L17 and r52L, as a
function of L for the PD two-level system with
E52p/3 and ~a! A50.05(p/2), ~b!
A50.5(p/2).
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FIG. 5. The first three members of the grap
family, G2–G4, governing the correlation func
tionsC2L12(2L) to C2L14(2L) for the RS system
at arbitrary integerL.
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graph family. The reason for starting withG2 consisting of
four nodes instead ofG1 with two nodes is that the RS se
quence is constructed from a string of two digit, 00, rath
than a single digit 1 in the TM and the PD cases. As
consequence, the growth rules of the graphGM turn out to be
more complex. For the sake of completeness, they are
sented below.

Each member of the graph family are composed of no
and branches that connect nodes in a treelike way. There
four types of nodes, distinguished by solid circles (d),
empty circles (s), solid square~j!, and empty square
(h). Each node is labeled by a finite string of distinct int
gers in decreasing order from the left to the right. The fi
member, or the second-stage graphG2 shown in Fig. 5~a!,
produces the whole family of graph by the recursive la
given below:

~1! The M -stage graphGM is made from its previous
stageGM21.

~2! When generating the graphGM from the graph
GM21, every node, denoted, say, bynpnp21•••n2n1 in
GM21, will survive and grow a node labeled b
Mnpnp21•••n2n1. For simplicity we omit the rightmost in-
teger 0 for all nodes except the one associated with a si
integer 0. Notice that these two rules are the same as in
TM case.

~3! The node labeled, say, bynpnp21•••n2n1 in GM21,
grows a node inGM of the type based on the following rule
~a! for np,M21, the node grows a node of the same typ
r
a

e-

s
re

-
t

s

le
he

;

and ~b! for np5M21, on the other hand, a node of typ
s (d) will produce a node of typed (s), while a node of
type h (j) yields a node of typej (h). There are two
exceptional cases. The first one is that inGM21, the node
denoted by the largest number of intege
(M21)(M22)•••21, and of the typed (j) will give
birth to a node of the typej(d). See, e.g., the nodej 4321
in G4 @Fig. 5~c!# grown by the noded 321 inG3 @Fig. 5~b!#
for the case withM54. The second exception lies i
the fact that in GM21, the node labeled by
(M22)(M23)•••21 and of the typed (j) should yield a
node of the typeh (s). See, e.g., the nodes 421 inG4

@Fig. 5~c!# produced by the nodej 21 in G3 for the case
with M54. The graphsG3 andG4 in Fig. 5 and, in fact, the
graphs up to any stageM are obtainable from the recursiv
laws presented above.

The autocorrelation functionCN(r ), given by Eqs.~7!–

~9!, can be found from the operatorŜM(2
L), which is worked

out by summing over all nodes in the graphGM except the
one labeled byM (M21)•••21. The string of integers as
sociated with each node, as well as the type of the n
~denoted bys, d, h, andj), governs the operator with

which the node contributes toŜM(2
L).

The operatorNnpnp21•••n2n1
contributed by the node

npnp21•••n2n1 in GM , is
Nnpnp21 . . .n2n1
55

2L21Wm1

† Wm2
1Wm3

† XLWm4
for the node of types

2L21Wm1

† Wm2
1Wm3

† X̄LWm4
for the node of typed

Wm1

† YLWm2
12L21Wm3

† Wm4
for the node of typeh

Wm1

† ȲLWm2
12L21Wm3

† Wm4
for the node of typej,

~16!
with the following exception:

N05~2L2121!W2L1W2L21
† XLW2L12L21

1W
~2M22!32L12L21
†

W~2M21!32L12L21. ~17!

Here

m15~2np12np211•••12n212n1!32L21, m25m112L,

m35m112L21, m45m312L.
The operatorsXL , X̄L , YL , andȲL are given by the recur-
sion relations, forL>2,

XL115W2L21
† X̄LW̄2L211YL ,

X̄L115W̄2L21
† XLW2L211ȲL ,

YL115W2L21
† XLW̄2L211YL ,

ȲL115W̄2L21
† X̄LW2L211ȲL , ~18!

and the initial conditions
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FIG. 6. Absolute value of the autocorrelatio
functionsCN(r ), with N52L17 and r52L, as a
function of L for the RS two-level system with
E52p/3 and ~a! A50.05(p/2), ~b!
A50.5(p/2).
h

X25Y25U0
†U111,

X̄25Ȳ25U1
†U011, ~19!

whereW̄2L are obtained fromW2L by the exchanging of eac
n(n)51 „an(n)5A… andn(n)50 „an(n)52A…, andW2L can
be found from the substitution rule of the RS sequence.
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As an example, we give the expression forS3(2
L), which

is generated by the graphG3, shown in Fig. 5~b!. Notice that
G3 consists of eight nodes, seven among which~saving the
noded321) contribute toS3(2

L). SoS3(2
L) is composed of

15 terms, i.e.,
S3~2
L!5~s 0!1~d 1!1~h 2!1~j 21!1~s 3!1~h 31!1~j 32!

5@~2L2121!W2L1W2L21
† XLW2L12L211W632L12L21

† W732L12L21#1@2L21W2L
† W232L1W2L12L21

† X̄LW232L12L21#

1@W232L
† YLW332L12L21W232L12L21

† W332L12L21#1@W332L
† ȲLW432L12L21W332L12L21

† W432L12L21#

1@2L21W432L
† W532L1W432L12L21

† XLW532L12L21#1@W532L
† YLW632L12L21W532L12L21

† W632L12L21#

1@W632L
† ȲLW732L12L21W632L12L21

† W732L12L21#. ~20!
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Notice that the first three terms on the right-hand side of
above equation correspond to the node 0 inG3, whereas
every two terms within a pair of square brackets corresp
to each of the other six nodes inG3 @see Eqs.~16! and~17!,
and remember that node 321 inG3 does not contribute to
S3(2

L)#.
We have evaluatedC2L1M(2L) for all 2<L<40 with

M57 to obtain convergence inM . The calculation is per-
formed using graphG7, so thatS7(2

L) is a sum of 255 terms
independent of the value ofL. The results are plotted in Fig
6 with two typical values of free parametersE andA, from
which one observes the nondecay behavior of the CF o
long-time intervals up to order of 1012.

Finally, we would like to point out that the results show
in Figs. 2, 4, and 6 are obtained with the initial sta
uc(0)& satisfyingszuc(0)&5uc(0)&, as in Ref.@6#. We have
evaluated the CF for a variety of initial states as well. It
found that although the quantitative behavior of the CF
pends on the initial state, for all three systems conside
here the long-range correlations exist regardless of the ch
of the initial state.

In summary, we have presented an effective algorithm
the evaluation of the autocorrelation functions for aperio
quantum systems where the aperiodicity in perturbation
based on the substitution rule. The algorithm reorganizes
e

d

er

-
d
ice

r
c
is
he

expression of the CF such that the computation of the C
related to a family of graphs that are generated recursiv
As examples of applications, we have calculated the CF o
unprecedentedly long-time intervals up to order 1012 for the
TM, PD, and RS aperiodic two-level systems. Our resu
show that there exist long-range correlations in all these a
riodic quantum systems, despite their different characteris
in the aperiodic modulation in the sense of different wand
ing exponentv.
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APPENDIX

In this appendix, we present, as an example, the b
derivation that reduces the CF@Eq. ~8!# to the contributions
of nodes in the graph@Eq. ~9!# for the TM system. Other
aperiodic systems based on the substitution sequences c
treated in a similar way.

From the self-similar nature of the TM sequence, it fo
lows that if one replaces, respectively, each 1 and 0 in
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M -stage TM sequenceSM with the sequenceSL and its al-
ternative S̄L , one obtains an (L1M )-stage sequenc
SL1M . Here theL-stage sequenceSL and its alternativeS̄L
are given by applyingL times TM substitution 1→10,
0→01 to a single element 1 and 0, respectively, namely

S051, S̄050,

S1510, S̄1501,

S251001, S̄250110,

S3510 010 110, S̄3501 101 001,

. . . .

As a result, we may start our derivation for the opera
Ĉ2L1M(2L) in Eq. ~8! with L51 andM52,3,4, . . . . For a
generalL, one can simply replace each quantity associa
with stage 1 by the quantity corresponding to stageL.

For L51 and M52, it follows from Eq. ~8! that
ŜM(2)5Q25(k51

6 Wk
†Wk12, which can be rewritten as

Q25W132
† X1W23212W232

† W3321W332
† X̄1W432 ,

~A1!

where the first term is the sum ofWk
†Wk12 for k51–2, the

second term is that fork53–4, and the third term that fo
k55–6. The operatorsX1 and X̄1 are given by

X15W̄1W1
†11, X̄15W1W̄1

†11. ~A2!

Notice thatX̄1 is defined by interchanging eachW (W†) and
W̄ (W̄†) in X1. Note also thatX̄15X1

† .
WhenL51 andM53, denotingQ35(k57

14 Wk
†Wk12, one

is ready to haveŜM(2)5Q21Q3, whereQ3 can be cast into
TM

-
t

,

r

d

Q35W432
† X1W5321W532

† X̄1W63212W632
† W732

1W732
† X1W832 . ~A3!

As one proceeds further, it will be straightforward to fin
that ŜM(2

L) for L51 is simply a sum of 2M21 terms,

ŜM~2!5 (
k51

2M21

Wk32
† X1* ~k!W~k11!32 , ~A4!

whereX1* (k) may be 2,X1 or X̄1. It follows from Eq. ~A4!
that increasing the value ofM from M to M11 needs to
sum up 2M more terms. Based on these facts, it is not di
cult to obtain the recursive laws 1 and 2 for the graph, a
establish the correspondence between each term in Eq.~A4!
and each node in the graph. In particular, the fin
string of distinct integers labeling each node in the gra
serves to determine the value ofk in expression~A4!
of the node-corresponding term. More explicitly, a no
labeled by npnp21•••n2n1 corresponds to a term
Wn*32

† X1* (n* )W(n*11)32 in expression ~A4!, where
n*5 b(2np12np211•••12n212n1)/2c11, with bxc denoting
the integer part ofx. The difficulty then lies in determining
the k dependence of the node type in the graph, which g
erns the operatorX1* (k) and is dependent on the structu
correlation of the TM sequence.

Noticing first thatX1* (k) may be 2,X1 , or X̄1, one clas-
sifies the nodes in the graph into three types, denoted
L, s, and d, corresponding respectively toX1* (k)52,
X1, andX̄1. Consider the TM sequence as a sequence m
of two basic blocksS1 and S̄1. X1* (k) in Eq. ~A4! can then
be specified,
X1* ~k!5H 2 if the kth and the~k11!th blocks are the same

X1 if the kth block is S1 and the ~k11!th block isS̄1

X̄1 if the kth block is S̄1 and the~k11!th block isS1 .

~A5!
the

cks
o

Finally, one can easily prove that, among others, the
sequence possesses the following two characteristics:~i! if
the k block is S1 (S̄1), then the (2j1k)th block, with any
integerj satisfying 2j.k, will be S̄1 (S1); ~ii ! the 2i th block
toggles betweenS1 and S̄1, while the (2i11)th block stays
to be S̄1, as the integeri increases from 1 to any large inte
ger. Based on the first characteristic, it is concluded tha
the kth and the (k11)th blocks are respectivelyS1 and S̄1
(S̄1 andS1), then the (2

j1k)th and the (2j1k11)th will be
S̄1 and S1 (S1 and S̄1), whereas the (2j1k)th and the
(2 j1k11)th blocks should be the same whenever thekth
and the (k11)th blocks are the same. As a consequence
if

X1* ~2 j1k!5H X1 if X1* ~k!5X̄1

X̄1 if X1* ~k!5X1

2 if X1* ~k!52,

~A6!

where j can be any integer satisfying 2j.k. Equation~A6!
leads to rules~a!, ~b!, and~c! in recursive law~3!, concerning
the type of the node, for the graph. On the other hand,
second characteristic results in the fact that the 2i th and the
(2i11)th blocks switch betweenS1S̄1 and S̄1S̄1, as the in-
tegeri increases. To be specific, the second and third blo
are bothS̄1, the fourth and fifth blocks turn, respectively, t
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S1 andS̄1; the eighth and ninth blocks both return toS̄1; the
16th and 17th blocks become respectivelyS1 andS̄1; and so
on. Therefore,X1* (2

i) should be either 2 orX1, and, in ad-
dition, for any positive integeri ,

X1* ~2i11!5H 2 if X1* ~2i !5X1

X1 if X1* ~2i !52.
~A7!

This gives rise to the exceptional case in the recursive
~3! for the graph.
following Eq. ~A5!.

rd

et
w

Now we turn to the study for the case with a generalL. In
this case, one may regard the TM sequence as constructe
two basic blocks,SL andS̄L . Therefore,ŜM(2

L) should read

ŜM~2L!5 (
k51

2M21

Wk32L
† XL* ~k!W~k11!32L ~A8!

in place of Eq.~A4!, where, similar to Eq.~A5!,
e

XL* ~k!5H 2L if the kth and the~k11!th blocks are the same

XL if the kth block is SL and the~k11!th block is S̄L

X̄L if the kth block is S̄L and the~k11!th block is SL .

~A9!

By paying attention to the inflation rulesSL115SLS̄L andS̄L115SLSL for the TM sequence, it is not difficult to work out th
recursion laws~11! for XL and X̄L . Then, the derivation that reduces Eq.~8! to Eq. ~9! for a generalL is similar to that
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