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Long-range correlations in quantum systems with aperiodic Hamiltonians
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An efficient algorithm for the computation of correlation functi@@F) at very long distances is presented
for quantum systems whose Hamiltonian is formed by the substitution aperiodic sequence alternating over unit
intervals in time or space. The algorithm reorganizes the expression of the CF in such a way that the evaluation
of the CF at distances equal to some special numbers is related to a family of graphs generated recursively. As
examples of applications, we evaluate the CF, over unprecedentedly long time intervals up to ord&rfof 10
aperiodic two-level systems subject to kicking perturbations that are in the Thue-Morse, the period-doubling,
and the Rudin-Shapiro sequences, respectively. Our results show the presence of long-range correlations in all
these aperiodic quantum systerff81063-651X97)16103-7

PACS numbg(s): 05.45+b, 03.65-w, 05.30—d

Considerable attention has been recently devoted to thivo-level systems subject to three specific types of aperiodi-
long-time behavior of correlation functiof€F's) in quasi- cally modulated kicking perturbation that follow, respec-
periodically or, more generally, aperiodically driven quan-tively, the Thue-Morse(TM), period-doubling (PD) and
tum systems1-6]. The question of particular interest is Rudin-Shapiro(RS) sequences. The algorithm is, however,
whether the quantum suppression of chaos, typical of timeeXpected to be applicable to other aperiodically driven sys-
independent and time-periodic Hamiltonians, can be circumtems that are based on the substitution rules or possess self-
vented, or at least strongly weakened, in Hamiltonians thagimilarity.
are aperiodic in time. This question arises from the following The two-level system subject to a kicking perturbation
background. In periodically driven systems, as the timehat is aperiodic over unit time intervals is described by the
evolution operatoiU is periodic in time, according to the following Hamiltonian

Floguet theorem, wave packets evolve as superpositions of -
periodic functions multiplied by expg, t), wherew,, are the _1 1 _
eigenvalues of the Floquet operator. In bounded systems, the H(t)=2Eo,+ 2"@1 &y A(t=N), @

spectrum ofw, is discrete, therefore the correlation functions
do not decay. On the other hand, when the system is subjeethereo, and o, are Pauli matricesy(n), being either 1 or
to an aperiodic driving, which represents an intermediatd, follows an aperiodic sequence that is generated by the
situation between the random and the periodic extremes, thepecific substitution rule, aral,(,,=a; or a, are two differ-
Floquet theorem is no longer applicable, so that the timeent kickings. Considering the discrete times, one can write
evolution need not be periodic or deterministically aperiodic.the solution of the Shitinger equation as follows,6]:
One might expect that the correlation functions decay to zero
for sufficiently long time or, at least, that this happens wher #(n))=U U ,(n-1)- - - U ,2)U ,(1)| #(0)) =W, | 4(0)),
the perturbation is strong enough. 2

A number of papers in this aspect seemed to result in
somewhat contradictory conclusiofl§. While some authors WN€ré
believed that there occurs a transition from the nondecaying
correlations(nonmixing behavior to decaying correlations
(mixing bghawo} when. perturbation is |ncreasé?l,3], oth- In the present study, we are interested in the long-time
ers questioned the existence of such a transitibB]. The b .

U . o . . __behavior of the CH6,7],

basic difficulty in obtaining a clearcut answer to this question

Uy = e (112)a,(noyg(i/2)Eq,. @)

lies in the absence of an analytical solution, and the practical 1 N
impossibility, up to now, of evaluating the autocorrelation c(r)=lim —— > (y(k)|¢(k+r))= lim Cy(r), (4)
functions over sufficientlyong-time intervals to establish or Now N=T k21 N— o

exclude the sporadic revivals of the CF, the presence of
which means the existence of nondecaying correlations. the decaying of which, for large, indicates mixing behavior

In this paper, an efficient algorithm is presented to allevi-and ergodicity, whereas the revivals of which would signal
ate this difficulty for some aperiodically driven systemsthe presence of long-range correlations and nonmixing be-
where the aperiodicity of the perturbation is generated byhavior. However, as is well known, the direct numerical
some substitution rules. We consider here as examples ongvaluation ofCy(r) for r>10° andN>10’ is not economi-

1063-651X/97/563)/26328)/$10.00 55 2632 © 1997 The American Physical Society



55 LONG-RANGE CORRELATIONS IN QUANTUM SYSTEMS ... 2633
(a) (v (c)
0 2 o 21 22 o FIG. 1. The first four members of the graph
I 3 1y 3 &1 family, G;—G,, serving to calculate the correla-
tion functions C,u+1(2%) to C,u+a(2L) for the
3 31

TM system at arbitrary integer.

cal, and in fact rather difficult due to the numerical error Each member of the graph family consists of nodes and
accumulated. Fortunately, for aperiodic quantum systembranches that connect nodes in a treelike way. Each node is
whose aperiodicity is constructed with the substitution rule Jabeled by a finite string of distinct integers that are arranged
the self-similar nature of the Hamiltonians allows a recursivein decreasing order from the left to the right. In addition, the
reorganization of expressidd) with the help of a family of nodes are classified into three types, distinguished by solid
tree graphs, by which it becomes possible to evaluateircles (@), empty circles, ©) and diamonds ¢ ) [see Fig.
Cn(r) for very larger (and even much largel to have 1]. The first membeiG,, shown in Fig. 1a), generates the
convergenceequal to some special numbers. Although theentire family of graphsa,, by the recursive laws described

decaying ofCy(r) at such peculiar values af may not

provide any useful information, the revivals of the CF at

such values of would be a signal of nondecayingpng-

range correlations. For the cases with the TM, PD, and RS

aperiodic Hamiltonians, such special numbersfare found
to be 2, while those folN are 2*M with L andM positive

integers. We shall now describe in some detail the algorithnmode denoted bjin,n,_;- -
for evaluatingCy(r) atr=2" for the TM, PD, and RS two-

level systems.

below:

(1) The M-stage grapl@,, is generated from its previous
stageGy,_ 1.
(2) When generating the graghy, (see also belowfrom
the graph Gy_,, every node, Ilabeled, say, by
NpNp—1---Ny in Gy 4, will survive and, in addition, grow a
-n,. For simplicity we omit the
rightmost integer O for all nodes except for the one labeled
by a single integer 0.

It should be emphasized that the reason for choosing the (3) Each node ofz,,_; grows a new node iG,, of the
TM, PD, and RS sequences as our first working examples igpe based on the following rulega) a node of typeO
that these aperiodic sequences display rather different typggelds a node of typd®; (b) a node of type® produces a
of aperiodic modulations, in the sense that they have th@ode of typeO; and(c) a node of type® grows a node of

“wandering exponents”’w<0, w=0, and >0, respec-
tively [8]. Here the wandering exponet is defined by
[8-10)

N
A<N>=n§1 (8ym—a)~N¢, (5)

whereN is the length of the time series, aadis the aver-
aged value of modulation

N
a= lim

N— oo

anl av(n) ' (6)

which is set to be zero for all three cases studied here.

TM SYSTEM

The Hamiltonian describing a two-level system with kick-

the same typed . The only exception lies in the fact that the
node labeled by NI —1) ---21 and of the type® (O) in
Gp -1 will give birth to a node of the typ&® (¢ ) in Gy,
rather than of type® (@). See, e.g., the nod® 4321 in
G, [Fig. 1(d)] grown by the node® 321 in G; [Fig. 1(c)]
for the case withM=4. The graphss,, G;, G, in Fig. 1
and, in fact, the graphs up to any stageare easily made
from the growth laws given above.

Now we turn to the rules relating the gra@y, and the
autocorrelation functiol€y(r). Rewriting Eq.(4) as

Cn(N) =((0)|Cn(N)|9(0)), (7)
with

R 1 N—r

CuN=N=7 2, WiWiir ®

ing perturbation modulated in the TM sequence is given byfor r=2- andN=2"M one has

Eq. (1) with a,(y=a;=A if »(n)=1 anda,n=a,=—A

for v(n)=0. Here v(n) follows the binary TM sequence

deduced from the substitution rule—10 , 0—01, and

started with 1. Notice thah,; and a, are so chosen as to

makea vanish. The method of evaluatif@(r) atr=2" and
N=2"M is based on a family of graptGy, with

. ) 1.
Corm(2 )stm(2 ) 9

HereéM(ZL) is an operator that can be obtained by summing

M=1,2,3,..., therecursive law for which is interestingly UP all nodes in the grapis, except the one labeled by

related to that of the TM sequence itself. Figure 1 shows th

M(M—1)---21. The string of distinct integers labeling each

first four members of the graph family, whose growth rulesnode, together with the type of the nodeenoted byO,
are described below. Similar growth rules serve to comput®. and ¢ ), determines the operator with which the node

the CF for a large class of TM-driven quantum systems.

makes contributions t&,(2"). In the following, we illus-
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FIG. 2. Absolute value of the autocorrelation
functionsCy(r), with N=2""7 andr=2%, as a
function of L for the TM two-level system with

|
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trate the contribution by each node; the derivation of suctisee Fig. 1c)]. Similar symbols are used later in E¢45)
correspondence for the TM system will be presented as aand (20) to denote contributions t8;(2") by the nodes in

example in the Appendix.

the graph. Notice that the node 321 in graphG; does not

The operator contributed by a node labeled bycontribute toS;(2").

NpNp—1°*-NaNy S
1 *
Wn*>< 2LXLW(n*+l)>< 2L,

where n* =[(2"p+2"p-1+ ... +2"24+2M)/2|4+ 1, with [X]
denoting the integer part of, and

24 for a node of type ¢
XF=1{ XL for anode of type O (10)
X, for a node oftype @.
Here the operators; andX_L are given by the recursion laws
XL+1:V72'-XLW;L+X—L1
XLo1= WX Wy + X, (1D
and the initial conditions
X;=W,Wi+1,
Xy =W Wi+1, (12)

with W,L given by W,. after the exchanging of each
v(n)=1 (a,n=A) and»(n)=0 (a,(,=—A). The recur-
sion relations fo,. andW,. themselves are governed by
the substitution rule of the TM sequence,

W2|_+1=V72|_W2|_, V\_/ZL+1:W2LV\_/2L. (13

As an example, we present the expression $g2"),
which is obtained from the gragBs, shown in Fig. {c), and
thus consists of seven terms:

S3(24)=(0 0)+(¢ 1)+(®2)+(O 21)
+(®@3)+(0 31)+(0 32
= ;LXLW2><2L+2LW;><2LW3><2L+W;><2LX_LW4><2L
WX Wit +WE X Wt
+25W L Wase o+ WD o0 X Wt (14)

Here the symbol¢O 0), (¢ 1), (@2), etc. denote the contri-
butions made by the corresponding nodes in the gi@ph

We have computed,.+m(2%) for all 2<L<40 with
M=7, where the time lag=2" is less than 1% of the
sample length 2°M and convergence has been reached in
M. The calculation is performed using gra@y, so that
S,(2%) is a sum of 127 terms. The results are plotted in Fig.
2 with two typical values of free parametdesand A. With
the algorithm given above, one is able to evaluate) for
very long-time delays up to order of®=10'2 The difficulty
of losing numerical accuracy when computing the CF with
increasingr is avoided, since the total length of the time
series could be simultaneously increased, while always
choosing graplG, and keepings;(2') a sum of 127 terms.
For example, whenL=40, one hasr=2%~10" and
N=2%"~10" an unprecedentedly long-time delay and time
series, the direct evaluation @f(r) needs to sum up 16
terms. With the present algorithm, howevex(r) stays to
be a sum of 127 terms. As a consequence, the results shown
in Fig. 2, although numerical in nature, are believed to be
rather accurate and reliable. The revivals of the CF over
long-time intervals is established with reasonable certainty,
implying the presence of the long-range correlations in the
corresponding quantum system.

PD SYSTEM

The Hamiltonian of the PD two-level system is given by
Eg. (1) with a,,=A for »(n)=1 and a,,=—2A for
v(n) =0, while v(n) is the binary PD sequence composed of
1 and 0. The PD sequence is made from the substitution rule
1—10, 0—11 and started with 19,10]. Notice here that
a, anda, are so chosen as to makevanish. Similar to the
TM case, the method of evaluatiny(r) at r=2- and
N=2L*M for the PD system is also based on a family of
graph Gy, M=1,23, ... . Figure 3 shows the first four
members of the graph family, the growth rules of which are
described below.

Each member of the graph family is composed of nodes
and branches that connect nodes in a treelike way. The nodes
are labeled by a finite string of distinct integers with the
rightmost integer being 0 am,. Heren, is also an integer
(see Fig. 3 The first membeG,, shown in Fig. 8), gen-
erates the entire family of grapl@,, by the recursive laws
described below:

(1) The (M +1)-stage graplG,,, , is produced from its
previous stages,, .
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(@ (0) () ()
87 30 30

- - = - FIG. 3. The first four members of the graph

3 3 1 339 4 family, G;—G,, determining the correlation func-

tions C,L+1(2%) to C,u+a(2Y) for the PD system
at arbitrary integet..

(2) When generating the grapB,,,, from the graph with the following two exceptions{a) the node O carries a
Gy, the nodes labeled by a string of integers ended up witlprefactor 2—1; and (b) in the graph G,,, the node
0, say,nyn,_1---n10 in Gy, will survive and grow a node (M —1) carries a prefactor 1.
denoted byMngn,_;---n;0, while a node associated with  As an instance, we give the expression $g¢2"), which
NgNg—1- - -N1Ng_also survives and gives birth to a node is generated by the grapBs;, shown in Fig. &), and has
Mngng_1- - -NyNe. The only exception is that the node asso-eight terms:
ciated with a single integgM — 1) in the graphG,, should _
survive, and generate a node labeled My instead of S3(2")=(® 0)+(® 10)+(® 20)+(® 210+ (®0)

M(M —1). The graph$s,, G3, G4 ip Fig. 3 and, in fact, the +(.1_)+(. 20_)+(.2_)
graphs up to any stagél are available from the recursive
laws given above. = (2" —1)W,i+ 2LW;|_+1W2LW2L+1
The autocorrelation functio@y(r) is also given by Eqgs.
& (2Y) i i + 25 WL Wl W +
(7)—(9). The operato5,,(2-) is found by summing over all oL+2VWoL WL +2

nodes in the grapl&,,. The string of integers associated

RYYil T RYYL
with each node governs the operator as well as its prefactor + 2" Wo+ W+ aWot WaL +1Wat 2+ 22 W5 Wa 1

. . . - L
with which the node contributes §y(2"). +2LW;L+1WZLW2L+2+ ZLW;L+2W;LW2L+1W2L+2
The operator contributed by a node labeled by
npnp_l' . n2n10 iS +W;_+2W;|_+1W;_W2L+3. (15)
W (ng)W(np_1) - - - W' (ny) W(ny ) W(0)W(n,) As in the TM case, we have comput€g.+m(2") for all

2<L <40 withM =7 to have convergence M. The calcu-
lation is performed using grapB-,, so S;(2%) is a sum of
128 terms, regardless of the valuelof The results are plot-
ted in Fig. 4 with two typical values of free paramet&rand

A. The nondecay behavior of the CF over long-time intervals
is clearly seen.

XW(nz)W(np_1)W(np),

while the contribution toSy(2Y) of a node denoted by
NgNg—1- - -N2N1Ng IS

W (ng)WT(ng_1)- - - WT(np) WH(ny) A(ng)W(n,)
XW(ny)W(ng-1)W(ng), RS SYSTEM

with The Hamiltonian of the RS two-level system is once again
given by Eg. (1) with a,,m=A for »(n)=1 and
A(ng)=W'(ng)WT(ng—1)- - - WH(1)WT(0)W(ny+1). a,m=—A for »(n)=0, butr(n) is the binary RS sequence
composed of 1 and 0. The RS sequence is made from a more
Here complicated substitution rule 660001, 01-0010,
10—-1101, 11-1110, and started with 0®,10]. Similar to
W(n)=WL+n, the former cases, the method of evaluatidg(r) atr=2"
and N=2""M for the RS system can also be based on a
which can be easily found by using the substitution rule offamily of graphG,,, with M=1,2,3, ... . Figure 5 shows
the PD sequence. The prefactor carried by each nodg, is 2the first three memberglenoted byG,, G;, andG,) of the

(@) )

FIG. 4. Absolute value of the autocorrelation
functionsCy(r), with N=2*7 andr=2', as a
] function of L for the PD two-level system with
E=2#/3 and (@ A=0.05(=/2), (b)
‘ ‘ ‘ . A=0.5(/2).

10 20 30 40 10 20 30 40
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(a) (v)
FIG. 5. The first three members of the graph
g8 14 P U family, G,—G,, governing the correlation func-
tions C,L+2(2%) to C,L+4(2%) for the RS system
s 31

at arbitrary integet..

graph family. The reason for starting with, consisting of and (b) for n,=M—1, on the other hand, a node of type
four nodes instead dB; with two nodes is that the RS se- O (@) will produce a node of typ® (O), while a node of
guence i; const.ru'cted.from a string of two digit, 00, rathertype OJ (M) yields a node of typdll (0J). There are two
than a single digit 1 in the TM and the PD cases. AS gyceptional cases. The first one is thatGg,_;, the node
consequence, the growth rules of the gr&qjpturn out to be denoted by the largest number of integers
more complex. For the sake of completeness, they are pl’?M 1 B A '
sented below. \ J(M—=2)---21, and of the type® (H) will give
Each member of the graph family are composed of node8irth 1o & node of the typM(®). See, e.g., the nodll 4321
and branches that connect nodes in a treelike way. There aifé G4 [Fig. Xc)] grown by the nod® 321 inG; [Fig. 5(b)]
four types of nodes, distinguished by solid circle®@)( for the case withM=4. The second exception lies in
empty circles ), solid square(l), and empty square the fact that in Gy_;, the node labeled by
(O). Each node is labeled by a finite string of distinct inte-(M —2)(M—3)---21 and of the typ® (M) should yield a
gers in decreasing order from the left to the right. The firsthode of the typed (O). See, e.g., the nod® 421 in G,
member, or the second-stage graph shown in Fig. %a),  [Fig. 5(c)] produced by the nod® 21 in G; for the case
produces the whole family of graph by the recursive lawsyith M=4. The graph®; andG, in Fig. 5 and, in fact, the

iven below: . .
9 (1) The M-stage graphGy, is made from its previous graphs up to any stagd are obtainable from the recursive
stageG M laws presented above.

M—-1-

(2) When generating the grapfs, from the graph The autocorrelation functloﬁ:NA(r), given by Eqs.(7)-
Gu-1, every node, denoted, say, byn, ;---nyny in (9), can be found from the operatB, (2-), which is worked
Gm-1, Wwill survive and grow a node labeled by out by summing over all nodes in the grah, except the
Mnpn,_;- - -Nyny. For simplicity we omit the rightmost in-  one labeled byM(M —1)---21. The string of integers as-
teger O for all nodes except the one associated with a singléociated with each node, as well as the type of the node
integer 0. Notice that these two rules are the same as in th@lenoted byO, @, (1, and M), governs the operator with

TM case. which the node contributes fé,\,,(z'-).

(3) The node labeled, say, by,n, 1---nyny in Gy_q, :
grows a node iy, of the type based on the following rules: The operator/\/’npnpf contributed by the node

(@) for n,<M—1, the node grows a node of the same type;pMp-1-

. R
--Nonq in Gy, IS

257 'Wy, Wi, + Wi X\ W, for the node of typed

2L‘1W§11sz+W,“:%’X_,_Wm4 for the node of typd®
N _ 16
et oMo W Y Wiy 4257 TW W, for the node of typé] (16)

WrTnlYLWm2+ 2L~ 1WIn3Wm4 for the node of typdll,

with the following exception: The operator(, , X_, Y., andY, are given by the recur-
sion relations, fol.=2,

= (25 1= L)W+ W1 X Wat 4 gt — X, W,
/\/0 ( YWoL 2L-1ALWaL ol -1 XL+1:W;L—1XLWZL_1+YL’

+
+W(ZM_Z)><2L+2L71W(2Mfl)><2|-+2|-71' (17) — —3 —
XL+1:W2|_71X|_W2L71+Y|_ y

Here " —
YL+1= 2|__1X|_W2L71+Y|_,

my=(2"%+2"%-1+...+2"%+2M)x 271 m,=m,;+2", — e —
1= ( ) 2= M Yia1=Wh X WL 1+, (18)

my=m;+2-"1, my=my+2". and the initial conditions
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(@) (b)

=
~=
O
0.2t ‘
HH\ |
0.0 5 5

0
L

1 FIG. 6. Absolute value of the autocorrelation
functionsCy(r), with N=2""7 andr=2%, as a
function of L for the RS two-level system with

|‘ \ 1 E=2x/3 and (@ A=0.05(7/2), (b
|‘||l.|1 1IH|.\. LI,
30 40 10 20 30
L

40

X,=Y,= U$U1+ 1, As an example, we give the expression $(2"), which
is generated by the grajBy, shown in Fig. Bb). Notice that

X_2=Y_2= UIUOJr 1, (19) G; consists of eight nodes, Eeven among whigaving the
node®321) contribute t&S;(24). SoS;(24) is composed of

Wherevsz are obtained fronW,. by the exchanging of each 15 terms, le.,

v(n)=1 (a,(n=A) andv(n)=0 (a,n=—A), andW,L can
be found from the substitution rule of the RS sequence.

S4(25)=(O 0)+(® 1)+ (1 2)+ (M 21)+ (O 3)+ (01 31) + (MW 32)
:[(ZL_l_1)W2'-+W;L—leW2L+2L_1+ng2L+2L—1W7><2'—+2L_1]+[2L_1WZLW2><2'—+W;L+2L—1X_LW2><2L+2L_1]
+[W;><2LYLW3><2'—+ 2"_1W;X2L+2L—1W3X2L+2L—l]+[W;,X2LY—LW4X2L+ 2"_1W$X2L+2L—1W4X2L+2L—l]
+[ 24 PW p Wisseot + Wi ot 1X Wasat ot -1]+[ Wi, 50 Y Wesot + 25 PWE o, ot 1 Wigsot 4 o0 1]

N - T
+ [W6><2|-YLW7><2'-+ 2L 1W6><2L+2L71W7><2L+2L*1]. (20)

Notice that the first three terms on the right-hand side of thexpression of the CF such that the computation of the CF is

above equation correspond to the node 0Gg whereas related to a family of graphs that are generated recursively.

every two terms within a pair of square brackets correspond\s examples of applications, we have calculated the CF over

to each of the other six nodes @ [see Eqs(16) and(17),  unprecedentedly long-time intervals up to ordet?1or the

and remember that node 321 @, does not contribute to TM, PD, and RS aperiodic two-level systems. Our results

S:(29)1. show that there exist long-range correlations in all these ape-
We have evaluatedC,.+m(2") for all 2<L<40 with  riodic quantum systems, despite their different characteristics

M =7 to obtain convergence iM. The calculation is per- in the aperiodic modulation in the sense of different wander-

formed using grapks-, so thatS;(2%) is a sum of 255 terms, ing exponenio.

independent of the value &f. The results are plotted in Fig.

6 vyith two typical values of free parametdﬁsandA, from ACKNOWLEDGMENT
which one observes the nondecay behavior of the CF over
long-time intervals up to order of 1® One of the authordZ.L.) appreciates financial support

Finally, we would like to point out that the results shown from Japan Society for the Promotion of Science for his stay
in Figs. 2, 4, and 6 are obtained with the initial statein Niigata, where this work was initiated.
|#(0)) satisfyinga,| (0))=|#(0)), as in Ref[6]. We have
evaluated the CF for a variety of initial states as well. It is APPENDIX
found that although the quantitative behavior of the CF de-
pends on the initial state, for all three systems considered In this appendix, we present, as an example, the brief
here the long-range correlations exist regardless of the choiaderivation that reduces the GEg. (8)] to the contributions
of the initial state. of nodes in the graplEq. (9)] for the TM system. Other

In summary, we have presented an effective algorithm foaperiodic systems based on the substitution sequences can be
the evaluation of the autocorrelation functions for aperiodictreated in a similar way.
guantum systems where the aperiodicity in perturbation is From the self-similar nature of the TM sequence, it fol-
based on the substitution rule. The algorithm reorganizes thiews that if one replaces, respectively, each 1 and 0 in the



2638 ZHIFANG LIN AND MASAKI GODA 55

M-stage TM sequenc8,, with the sequenc&_ and its al- QsIWszxlwsszFngzx_lWeszr 2WE, Wy
ternative S, one obtains an L(+M)-stage sequence ‘
S_.m. Here thel-stage sequenc8 and its alternatives, W75 2X1Wsxs. (A3)

are given by applyingL times TM substitution 110,

0—01 to a single element 1 and 0, respectively, namely, As one proceeds further, it will be straightforward to find

So=1, S,=0, that Sy, (2%) for L=1 is simply a sum of ¥ —1 terms,
$,=10, $,=01, s
$,=1001, S,=0110, Su(2)= 2 WX (WWiraxz,  (A4)

S;=10010 110, §=01 101 001, L
whereX7 (k) may be 2 X, or X;. It follows from Eq.(A4)
that increasing the value d#l from M to M+1 needs to

As a result, we may start our derivation for the operatorild{?tgpogza?;']otrﬁet?g‘jr'sﬁ?;%vgnltgize Zf?gtrst,hi(ta isrr;othdi;fri]— q
E,om(2Y) in Eq. (8) with L=1 andM=2,3,4, ... . For a graps.

; . . stablish the correspondence between each term iGA2g.
generalL, one can simply replace each quantity associate

h by th . di nd each node in the graph. In particular, the finite
with stage 1 by the quantrgy corresponding to stage string of distinct integers labeling each node in the graph
For L=1 and M=2, it follows from Eq. (8) that

. serves to determine the value &f in expression(A4)
Su(2)=Q,=2¢_;W{ Wy », which can be rewritten as of the node-corresponding term. More explicitly, a node
ot + + o labeled by npn, ;---nyn; corresponds to a term
Q2= Wi pX1Was2 T 2W5, W2+ Wa s X1 Waasc2, w! XI(N*)Wx +1)x2  in  expression (A4), where

(Al) *n*_XZ n Np_— n n 7 i
n*=|(2"+2"-1+...+2"+2M)/2|+ 1, with| x| denoting

where the first term is the sum Wkau for k=1-2, the the integer part ok. The difficulty then lies in determining
second term is that fok=3—4, and the third term that for thek dependence of the node type in the graph, which gov-

k=5-6. The operator¥, and X, are given by erns the operatoX3 (k) and is dependent on the structure
o - T correlation of the TM sequence. o
Xi=W,WI+1, X;=W,W]+1. (A2) Noticing first thatX} (k) may be 2,X;, or X;, one clas-

_ sifies the nodes in the graph into three types, denoted by
Notice thatX; is defined by interchanging eati (W' and ¢, O, and @, corresponding respectively 7 (k)=2,
W (W') in X;. Note also thai;=X]. X1, andX;. Consider the TM sequence as a sequence made
WhenL =1 andM =3, denotingQ;= 342, W{W,.,, 0ne  of two basic blocksS, and S,. X¥ (k) in Eq. (A4) can then
is ready to havé&,,(2)=Q,+ Q3, WwhereQ; can be cast into  be specified,

2 if the kth and the(k+1)th blocks are the same
X} (k)= é if the kth block is Sl_and the (k+1)th block isgl (A5)
X, if the kth block is S; and the(k+1)th block isS;.

Finally, one can easily prove that, among others, the TM X, if Xf(k)Zx_l

sequence possesses the following two characterigtics: o — ok

the k block is S, (S,), then the (2+K)th block, with any Xi(@2Hk)=1 Xy i Xp(k)=X, (A6)
integerj satisfying 2>k, will be S; (S,); (ii) the 2th block 2 if X{(k)=2,

toggles betweeis; andS,;, while the (2+1)th block stays

to beS,, as the intege'r increases_frpm.l_to any large inte- ‘wherej can be any integer satisfying 2k. Equation(A6)

ger. Based on the first characteristic, it is concluded that ifg44s to rulega), (b), and(c) in recursive law(3), concerning
the kth and the k+1)th blocks are respectively; andS,  the type of the node, for the graph. On the other hand, the
(S; ands;), then the (2+Kk)th and the (2+k+1)th willbe  second characteristic results in the fact that the and the

S, and S; (S; and S;), whereas the (2-k)th and the (2'+1)th blocks switch betweeB;S; andS,;S,, as the in-
(2'+k+1)th blocks should be the same whenever kitle  tegeri increases. To be specific, the second and third blocks
and the k+1)th blocks are the same. As a consequence, are bothS,, the fourth and fifth blocks turn, respectively, to
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S, andgl; the eighth and ninth blocks both retﬁni); the _Now we turn to the study for the case with a gendraln

16th and 17th blocks become respectivBlyandS;; and so  this case, one may regard the TM sequence as constructed by
on. Therefore X3 (2') should be either 2 oX,, and, in ad-  two basic blocksS, andS, . Therefore Sy (2") should read
dition, for any positive integer,

. ; M_
2 if XF(2h=X, 2 1

i & t
XTE™=1 i xr@=2. (A7) Su(2= 2 WX (Wiaxzt  (A8)

This gives rise to the exceptional case in the recursive law
(3) for the graph. in place of Eq.(A4), where, similar to Eq(A5),

2L if the kth and thek+ 1)th blocks are the same
Xf (k)= ﬁ if the kth block isSiand the (k+1)th block isgl_ (A9)
X, if the kth block is S, and the(k+1)th blockis S, .

By paying attention to the inflation rule& , ;= SL§ and§L+1=§LSL for the TM sequence, it is not difficult to work out the

recursion lawg11) for X, and X, . Then, the derivation that reduces E8) to Eq. (9) for a generalL is similar to that
following Eg. (A5).
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